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Abstract. The percolation cluster characteristics of ZD Lennard-Jones (LJ) fluid and solid 
phases have been determined by molecular dynamics computer simulation. The variation of 
the percolation threshold with temperature from the soft-core to hard-core limits is reported 
and interpreted in terms of changes in the short-range structure. The distribution of clusters 
is analysed using the cluster number distribution function, n,. Based in the small systems 
considered, we find that at the percolation threshold, the measured percolation exponent t 
departs from the universal ZD value of 2.05, ranging from 1.6 * 0.1 in the soft-core limit to 
2.0 & 0.05 in the hard-core limit. However, the fractal dimension of the clusters, Df, at the 
percolation threshold is indistinguishable from the ZD universal value of 1.9, having the range 
1.9 * 0.1 for all state points considered. The same trends are observed in 3D U fluids. We 
examine the time dependence of the percolating clusters and show them to be ephemeral on 
a molecular timescale. 

1. Introduction 

Percolation studies have until recently been confined to non-interacting occupied sites 
randomly placed on a lattice. The importance of percolation in many physical sciences 
has prompted studies of interacting particles on lattice sites and in continuum space 
(Balberg and Binenbaum 1987). In this report we continue our investigation into the 
percolation cluster statistics of interacting continuum (‘off-lattice’) systems explored 
using molecular dynamics (MD) computer simulation. In the previous report (Heyes and 
Melrose 1988), the percolation cluster statistics of the 313 Lennard-Jones (LJ) fluid were 
described. Here we investigate the corresponding 2~ fluid. We consider the effect of 
temperature and cluster definition (through the assumed connectivity distance) on the 
percolation threshold and statistics. A new feature of this work is that we examine the 
time dependence of the percolating clusters. 

2. Cluster and percolation theory 

Our method of determining clusters is identical to that used previously (Heyes and 
Melrose 1988, 1989). The operational definition for particles belonging to the same 
cluster is that each member is separated from at least one of the others by a distance sq. 
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The disk of diameter a, around each LJ particle is called a soft-shell. As a, diminishes, 
the repulsive core of the particle exerts a greater influence on the nature of the clusters 
formed out of the soft-shells since it restricts the extent of overlap of the shells. This we 
term the soft-core to hard-core transition. 

We evaluated the function, P ,  the fraction of configurations (time steps) generated 
by the computer that manifested at least one percolating cluster (PC). The percolation 
threshold in the thermodynamic limit (i.e., N +  m)pc is best estimated for finite Nwhen 
P = 0.5, because it shows the smallest system size (i.e., N )  dependence. 

The distribution of different sized clusters is characterised by the cluster number 
distribution function, n,, which for these continuum systems is the time-average number 
of clusters containing s particles, N,  divided by N ,  i.e., n, = N,/N (Balberg 1988). 
For finite periodic systems there is an upper bound on s, i.e., 1 S s S N ,  resulting in 
distortions fors  + N. At the percolation threshold (Stauffer 1984). 

At the percolation threshold, the radius of gyration R, provides a route to the fractal 
dimension Df of the non-percolating clusters (Herrmann 1986) 

where Rij is the vector separation between particles i and j .  The scaling relationship here 
isR, ccs’lDfass+m. 

The pair radial distribution function g(r )  and pair connectedness function p(r) for 
pair separations r are probes of the local structure in the whole fluid and in the percolating 
clusters, respectively (Seaton and Glandt 1987) 

g ( r )  = n(r)/(2nrp&). (3) 
where 6r is the radial increment for n(r ) ;  n(r )  is the number of particles found on average 
within r - 6r/2 s Y s Y + 6 ~ 1 2 .  

If P, is the fraction of molecules in the percolating cluster PC then 

p(r) = n(r)’P,/(2nrp6r). (4) 
where n(r)’ is the number of particles found on average within Y - 6r/2 6 Y s Y + 6r/2 
within the PC. The search for pairs inp(r) is restricted to those particles within the same 
PC, As r+  m thenp(r) + P i .  For finite r there is aregime in whichp(r) - ~ ~ f - ~ ,  For the 
small N considered here it is hardly possible to go out far enough in Y to determine Df in 
the hard-core limit because the density oscillation from the short-range structure obscures 
the small decrease in p(r) with Y at short separations. The p(r) look similar to the g ( r )  
but attain a lower limiting value. When the pair separation becomes comparable to the 
size of the periodic cell, the dimension of the PC must approach the dimension of the 
space, D (= 2 here). 

3. Simulation details 

The details of the MD technique used for particles interacting via the LJ potential 

@(r)  = 44(a/r)12 - (a/r>61, ( 5 )  
have been described elsewhere (Heyes 1987). The MD simulations were performed on 
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square unit cells of area A containing N = 50, 450 and 1250 particles. The Verlet 
algorithm was used to increment the positions of the molecules. We use LJ reduced units 
throughout, i.e., kgT/E +- T ,  and number density,p = Nu2/A. Equilibrium simulations 
were made, during which the density was adjusted to locate the percolation threshold. 
These extended for 16 reduced time units for N = 450. These were followed by a 
production simulation of 8 reduced time units to accumulate the reported quantities. 

0- 

4. Results and discussion 

0.5 - ,,,,s+*i. 

In figure 1 the boundary lines between percolating and non-percolating states are pre- 
sentedsuperposedonthem LJphasediagram (e.g. Reddy and O’Shea 1985). Percolation 
occurs to the right of each line. A range of U, is considered, which spans essentially the 
entire LJ phase diagram. Despite increasing statistical uncertainty in the soft-core limit, 
the results are consistent with the limit GS = npu$’4u2-+ 0.94, observed by Bug et a1 
(1985) for square-well fluids. The figure reveals very much the same trend as for the 3D 
fluid (Heyes and Melrose 1988). The main features of the 2D fluids are: 

(i) In the hard-core limit (e.g., U, s 1.15), in the ordered ‘solid’ phase, the val.ue of 
p c  increases with decrease in temperature from T = 10 +- 0.6, the range considered here. 

(ii) The U$ = 1.2 and 1.5 lines manifest a curvature to lower density as T decreases 
from T = 2 to T = 0.6. 

(iii) The qr 2 2.0 lines vary less with temperature between T = 2.0 and T = 0.6. The 
low temperature curvature is small but towards higher density. The effect becomes less 
pronounced for U, 2 3.0. 

These different regimes of behaviour result from changes in short-range structure. 
The regimes (ii) and (iii) follow the same pattern as the square-well fluids of Bug et a1 

- Figure 1. The percolation thresholds for 
the 2~ LJ solid and fluid superposed on 
its phase diagram. The full curves denote 
boundaries between non-percolating 
states (to the left) and percolating states 
(to the right) of the curves. Distance is \I/ ~~~ in LJ U ,  Each line corresponds to and is 
annotated by a particular search diameter 
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a, in LJ units. 0, N = 50; 0, N = 450; X ,  

N = 1250. The broken curves mark the 
phase boundaries between gas (g), liquid 
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Figure 2. Pictorial illustration of non-percolating and percolating clusters in two-dimensional 
periodically repeating cells at the percolation threshold, taken from 2D LJ MD simulations 
with a, = 1.5. The outer dashed circles are the soft cores of the LJ molecules (of diameter 
us). The central square is the real MD cell; the surrounding cells are its images. The cluster 
with 0 is percolating. The clusters with 0 are non-percolating. (a )  p c  = 0.388, 7' = 0.6; ( b )  
p c  = 0.441, T = 10.0; N = 450. 
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(1985). In case (ii), as T-  T,, (the critical temperature) the percolating clusters being 
more tenuous. The ‘branches’ of the PC are thinner and held together more tightly with 
the drop in temperature to T,. This is illustrated in figure 2. The percolation threshold 
density correspondingly decreases. This is caused by an enhanced local connectivity as 
temperature drops, without causing a severe contraction in the number of nearest 
neighbours within a,. Figure 3 presents pair-radial, g ( r ) ,  distribution functions and r- 
dependent coordination numbers, n,(r),  illustrating this point. The first two peaks in 
g ( r )  become larger as the temperature drops, even though at r = 1.15 the coordination 
number is statistically the same for T = 1.0 and T = 10.0. 

Further into the soft-core regime a drop in temperature causes greater bunching of 
the soft-shells on the --a, distance scale. These regions are joined by short thinner 
‘strings’ of particles, sometimes called ‘necks’. We have made the transition from a 
‘stringy’ percolating cluster to another form of PC consisting of ‘blobs’ of soft-shells 
connected by narrow ‘node-links’ . Consequently, the percolation threshold increases. 
This is seen clearly in the instantaneous configurations presented in figure 4. The 
g ( r )  and n,(r) in figure 5 demonstrates the growth of the first co-ordination shell and 
enhancement of coordination number at a,, which makes percolation less likely as 
temperature decreases. Higher densities are therefore required to achieve p -+ p,. 

Although, regimes (i) and (iii) manifest similar p c  temperature dependences, the 
microscopic origins are different. In regime (i) the particles pack in a triangular lattice, 
evident in figure 6. As the temperature drops the first peak in g ( r )  moves to higher r ,  
revealed in figure 7 .  As a, < a here, this shift moves many neighbours outside the soft- 
shell range. Therefore the density needs to increase to induce percolation. In this regime 
the PC consists of broad bands of particles at all temperatures. The non-percolating 
cluster ‘holes’ are bigger at lower temperature. 

Percolation below pc(N)  (i.e., when P = 0.5) is purely a finite-N artefact. As the 
density decreases below pc  the percolating cluster decreases dimensionality below Df at 
p , .  This is because the PC condition is satisfied with the aid of the periodic boundary 
conditions. It is statistically more probable for the PC to form along the cell axes than 
along any other direction because fewer particles are required to connect across the 
simulation cell and hence over all space. In figure 8 we show this behaviour for E = 
( p ,  - p ) / p  = 0.005 and 0.1 for T = 10 and a, = 1.2, wherep, = 0.662. 

I 
0 ’  . ~ Figure 3. The pair radial distribution functionn(r) 

I - ,  

for N = 50 states at p = 0.75. The full curve cor- 
0 1 2 3 responds to T =  1.0 and 0 correspond to T =  

10.0. Inset: the derived coordination numbers. 
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Figure 4. As for figure 2 ,  except that U, = 2.0, N = 450 and the following states at p c :  
( a ) T = 0 . 6 , p = 0 . 3 0 7 ; ( b )  T=5.0 ,p=O.270.  
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0 1 2 
r Figure 5. As for figure 3, except thatp = 0.265. 

Although the percolation threshold is a statistically well-defined state point for 
chosen Tand a,, the percolating clusters change in appearance very rapidly. This is seen 
in figure 9 for the state point T = 5.0, p = 0.4459 and a, = 1.5. The two configurations 
shown in the figure are at intervals of 1 LJ time unit. (This corresponds to 2 ps for LJ 
argon.) They are very different in appearance. It leads one to question whether in a 
molecular system the percolating clusters themselves can have any significance for 
dynamical properties. There are short-range geometrical changes associated with the 

Y 

X 

Figure6.Asforfigure2,exceptahard-corestateischosen, U, = 0.9, T =  10.0andp = 1.345. 
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r Figure 7. As for figure 3 ,  except thatp = 1.33. 

percolation threshold (Heyes and Melrose 1989) which could change the density and 
temperature dependence of the transport coefficients at the percolation threshold. In 
figure 10 we show how the PC varies with time for the hard-core state, T = 0.6, p = 
1.1073 and a, = 1.0. There the PC changes with time in a striking manner. At this low 
temperature the percolating and non-percolating particles partition themselves into 
zones on a triangular lattice. In the fluid phase, close to the solid coexistence line, i.e., 
with a, - 1.2, the PC become more tenuous with increasing temperature. 

Approximately, -70% of the molecules take part in the PC for N = 450 and 1250, 
rising to -80% for N = 50. The maximum size of the non-percolating cluster is about 
0.4 N ,  occurring at a density just belowp,. 

The coordination number, that is the average number of neighbours within a,, 
decreases as temperature increases above T,. For example, at T = 10 and a, = 1.0 the 
coordination number is 2.1 taking all neighbours whereas it is 2.3 for particles only 
within the percolating cluster. At T = 0.75 these numbers are 2.2 and 2.4, respectively. 
In the soft-core limit this trend is more pronounced. At T = 10 and a, = 1.75 the 
coordination number is 2.7 considering all particles and 2.9 taking particles only within 
the PC. At T = 0.75 these quantities have risen to 3.2 and 3.3 respectively. These trends 
are consistent with extra agglomeration of LJ particles as the temperature drops at low 
density. 

We now consider the percolation exponents. There is evidence that the percolation 
exponent on lattices, random lattices and random continuum systems are the same or 
‘universal’ (Kim et a1 1987, Gawlinski and Stanley 1981). When compared with previous 
lattice percolation studies these continuum systems contain a much smaller number of 
particles to form clusters, compared with occupied sites in an equivalent lattice. We 
are confined to smaller cluster sizes before finite-N artefacts dominate. Therefore 
comparatively larger uncertainties exist on the exponents. Based on a smalls resolution, 
deviations from 2~ universality appear in at least one of the exponents of the 2D LJ fluids. 

The cluster number distribution function, n,(s) has the exponent, z = 2.05 on alattice 
randomly occupied (Stauffer 1979). We have obtained z from log-log plots of n,(s) 
against s. Also, using a bin size that increases exponentially with s, we have adjusted z 
to obtain a plateau in n , ( ~ ) / s - ~ .  Both methods yield the same value of z within the 
statistical uncertainty of the simulation data. We find that z decreases from 2.0 * 0.05 
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Figure 8. Pictoral illustration of non-percolating and percolating clusters in two-dimensional 
periodically repeating cells at a distance from the percolation threshold taken from ZD LT MD 
simulations with = 1.2: (a )  E = 0.0045, T = 10.0; ( b ) ~  = 0.10, T = 10.0. N = 450. 
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Figure 9. Pictoral illustration of the time-dependence of the non-percolating and percolating 
clusters at the percolation threshold. U, = 1.5, N = 450, p = 0.446 and T = 2.0. If the time 
since the start of the production simulation is t then, (a) t = 2.0 and (b )  t = 3.0. 
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FigurelO,Asforfigure9,exceptthato,= 1.0andp = 1.107: ( a ) f = 2 . 1 ,  ( b ) t =  3.3.  
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Figure 11. The cluster number distribution for 
non-percolatingclusters,n,(s) fortheLJ(N = 450) 
LJ state points at pc:  (a) T =  10.0, p = 1.345, 
U, = 0 . 9 , ~  = 1.91 2 0.05;(b)T= 1 . 0 , ~  = 0.832, 
U, = 1.1, t = 1.97 * 0.05. 

in the (high-density) hard-core limit to avalue of 1.6 * 0.1 in the (low-density) soft-core 
limit. Examples of n, at p ,  that demonstrate this trend are given in figure 11. Finite size 
effects distort n,(s) from the power law decay ass + N. We observe a similar trend in 3~ 
LJ going from t = 2.0 t 0.05+ 1.85 * 0.05. (In 3~ the universal value for t is 2.2 for 
randomly occupied lattices (Stauffer 1984).) 

The non-percolating and percolating clusters formed from non-interacting particles 
on a lattice at p c  manifest the same fractal dimension, Df. For non-interacting particles, 
percolation theory gives Df = D - p/v, where D is the dimension of the space (= 2 here) 
andp and v are the percolation exponents. I n z ~ ,  p = 0.14 and v = 1.35 (Stauffer 1979). 
Therefore D, = 1.90. As for z we obtained D, by two routes from the radius of gyration 
of the non-percolating clusters. A log-log plot of R, against s has a slope of l/Df, 
illustrated in figure 12. Also, using a bin size that increases exponentially withs, we have 
adjusted Df to obtain a plateau in R,(s)/sl/’f. Both methods yield the same value of Df. 
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Figure 12. The s-dependence of the radius of 
gyration R, for the N = 450 LJ state points at the 
percolationthresholdwith T = 1 . 0 , ~  = 0.832and 
U, = 1.1, Dr = 1.04 * 0.05. We used R,  0~ sllDr. 

2’5  0 5  1 5  

b , O  s 

Although, the statistics degenerate in the soft-core limit, we find that Df is 1.9 r 0.1 
independent of temperature from the hard-core extreme to the soft-core limit. 

The pair connectivity function gives Df of the percolating cluster(s) at pc. At inter- 
mediate distances, in terms of the simulation cell sidelength, p(r) CC &-’. Therefore Df 
could be extracted from a log-log plot of p(r) against r. In practice, this part of p(r)  is 
partially obscured by the short-range structure. An example of p(r) and g(r) are given 
in figure 13. The number of particles contained within radius r about a particle varies as 
rDf as r--f W .  This function, obtained by integratingp(r), gives statistically better values 
for Df for the percolating cluster. At  p c  the Df from R, and p(r) are statistically indis- 
tinguishable. 

0 . 2  r 

- 0  2 

Figure 13. Log-log plot of g(r )  (X) ,  andp(r) (U) 
0 2  0 6  1 0  at the percolation threshold. N = 4.50,~ = 0.441, 

T =  1 0 . 0 , ~ ~  = 1 .5andDf=  1.84 +0.05. iag,Q 
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5. Conclusions 

We have demonstrated that the percolation cluster statistics of the two-dimensional, 
Lennard-Jones fluid and solid can be interpreted directly fromchanges in the short range 
structure measured by the pair radial distribution function. In molecular fluids the shape 
of the percolating cluster changes markedly on the timescale of a molecular vibration. 
Martin et al (1987) showed that mobile (attractive) interacting particles on a lattice 
probably belong to the same universality class as those of non-interacting lattice particles 
(i.e., have the same exponents). We present evidence that suggests there may be 
departures from this in the soft-core limit for continuum interacting systems. Although 
this is tentative until molecular dynamics simulation is capable of treating much larger 
samples, comparable with those consideredin2~ latticemodels, e.g. -1O''sites (Stauffer 
1984, 1986). Crossover effects occurring at larger cluster size than treated here cannot 
be ruled out. 
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